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ABSTRACT
The Internet of Things (IoT) revolution has brought millions of
small, low-cost, connected devices into our homes, cities, infras-
tructure, and more. However, these devices are often plagued by
security vulnerabilities that pose threats to user privacy or can
threaten the Internet architecture as a whole. Home networks can
be particularly vulnerable to these threats as they typically have no
network administrator and often contain unpatched or otherwise
vulnerable devices.

In this paper, we argue that the unique security challenges of
home networks require a new network-layer architecture to both
protect against external threats and mitigate attacks from compro-
mised devices. We present initial findings based on traffic analysis
from a small-scale IoT testbed toward identifying predictable pat-
terns in IoT traffic that may allow construction of a policy-based
framework to restrict malicious traffic. Based on our observations,
we discuss key features for the design of this architecture to pro-
mote future developments in network-layer security in smart home
networks.
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1 INTRODUCTION
The Internet is going through a new phase in which billions of new
types of devices are getting connected in homes, industry, cities,
and agriculture, bringing unprecedented possibilities of understand-
ing, automation, and improvement of our physical environment.
This revolution, the ‘Internet of Things’ (IoT), is enabled by a com-
bination of ubiquitous connectivity, devices that are cheap, small,
and powerful, and the practically unlimited storage and processing
power of the cloud. According to Gartner Inc., for example, fore-
casts over 20 billion IoT endpoints by 2020, with a sustained annual
growth of 33% from 2015 [13].

This new wave of devices creates new requirements for infras-
tructure, new traffic patterns, and, unfortunately, new vectors and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IoT-S&P’17, , November 3, 2017, Dallas, TX, USA.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5396-0/17/11. . . $15.00
https://doi.org/10.1145/3139937.3139949

surfaces of attack [28]. For example, in 2016 alone multiple vul-
nerabilities in IoT devices were exploited for large-scale privacy
violations, such as the ‘baby-camera search engine’ [9], and some of
the largest-yet-seen DDoS attacks which brought down prominent
blogs and large part of the DNS infrastructure in the US [11]. Toys
have leaked recordings of parent-children conversations [10] to
the Internet, and, in a spectacular proof-of-concept attack, a drone
was able to control the smart lights of an entire building by flying
by [20]. The security and privacy implications are vast, and if not
addressed will slow down, if not downright prevent, the benefits
that the technology can bring to society. As the examples above
indicate, vulnerabilities can lead to privacy violations, control and
hazardous operation of devices by unauthorized actors, and use of
the devices for attacks on other infrastructure.

While there is a vast body of work in network security, there
are important differences in the IoT environment that may require
revisiting assumptions and techniques used to detect and mitigate
various forms of attack. For example, there is a much larger variety
of devices; many provide very little feedback of their activities to
users, are located in networks with effectively no administrator,
and cannot usually run extra software to provide robust security
or detect attacks. It is hard for even the manufacturer to patch the
devices if they leave the factory with a vulnerability [23].

Some of the differences present potential opportunities: most IoT
devices are single, or at least, limited-function devices, which can
greatly constrain the way they interact with the network. Given
these characteristics, and the increased prevalence of programmable
network devices, the gateway between a set of IoT devices and
the Internet becomes an attractive point to observe the devices’
interaction with the network, as well as to deploy software to detect
and, potentially, mitigate the effect of attacks in both directions.

In this paper, we claim that a new network-layer architecture
is necessary to to protect against threats from easily-vulnerable
IoT devices and present our first steps toward designing a secure
architecture targeted for consumer network gateways (i.e., home
routers). Our approach is based on the premise that IoT devices
perform a small set of functions that follow predictable patterns
in network traffic compared to a general-purpose system, thus
allowing the construction of policies to restrict their traffic. We
specifically focus on devices for home networks, which typically
have few (if any) security measures, but can pose a threat to their
users’ privacy, or, in coordination many similar devices, the Internet
architecture as a whole. Our contributions in this paper are as
follows:

• Discuss our hypothesis about how (uncompromised) IoT
traffic is predictable and thus may be feasible to filter using
a policy-based approach
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• Present initial findings analyzing traffic from a small-scale
IoT testbed showing how certain traffic characteristics may
support our hypothesis, and demonstrate key areas where it
does not
• Outline a preliminary set of requirements for a policy-based
approach informed by our testbed results

While our work to date has involved only a small set of devices,
our analysis so far has yielded interesting results that help define
the scope of a network-layer approach to securing smart homes.
We hope to use these results to support further development of
a secure architecture and promote discussion on improving IoT
infrastructure.

Threat model: Our work focuses on preventing attacks on IoT
devices and applications directed to or from networks other than
those used by the devices for normal operation. In this way, we aim
to mitigate attacks from unknown external sources (e.g., exploit-
ing a device’s insecure management interface) or remote attacks
launched from device (e.g., leaking user information from outside
sources or participating in a DDoS attack) that may be caused by
vulnerabilities in device platforms. We do not focus on physical-
or link-layer IoT protocol security (ZigBee, Bluetooth, etc.), which
is already well-studied, and instead focus on the security of the
endpoints between these devices and the Internet, where vulner-
abilities may be more widespread. Access control and permission
systems provided by devices for controlling usage and sharing of
data are also important, but orthogonal, issues outside our scope.
Instead, we specifically assume that devices are insecure by default
and advocate for a network-layer solution that does not require
changes to the devices and can work in concert with other device-
or protocol-specific security measures.

2 BACKGROUND AND RELATEDWORK
A wide range of IoT devices are now available for home use: includ-
ing smart appliances, lights, toys, personal assistants, locks, smoke
detectors, and more. These smart home devices, or “things”, rely on
communication with online services in the cloud or with other local
devices to provide functionality. Despite this reliance on sharing,
IoT devices have typically lacked robust security measures due to
limited hardware resources or lack of consideration during design.
These vulnerabilities have been widely exploited [8, 9, 18] for pur-
poses such as leaking private information, tampering with device
resources, or participating in DDoS attacks. Worse still, many de-
vices provide no support for firmware updates to fix vulnerabilities,
or only permit manual upgrades by a user, leading to a persistent
ecosystem of vulnerable devices on the Internet [8, 23].

Much work has been conducted to strengthen IoT security pro-
tocols and add permissions and access controls to protect user
data—we refer the reader to [14] and [5] for more detailed surveys.
Of particular interest to modern smart homes are commercial IoT
platforms, such as Samsung SmartThings [21] and Apple Home-
Kit [2], which provide a framework enabling developers to write
custom applications for supporting devices, enabling complex func-
tionality while maintaining some standards for transport security
and access controls. These systems represent a promising step for-
ward for IoT security, but the devices or the platform itself may still

contain vulnerabilities such as overprovisioning of permissions [5],
or device-specific issues like protocol misuse or exposed debug
interfaces [27]. Addressing the permissions problems is an area
of ongoing work [5, 6], but the security of the underlying plat-
form that provides these facilities is also critical to protect against
out-of-band vulnerabilities.

Moreover, modern IoT platforms only provide security to devices
that support it. Legacy or otherwise unsupported devices may still
have inadequate security measures (or none at all), may never
receive updates, and could take years to be replaced [23]. Thus,
a comprehensive platform for securing a smart home must also
include a component at the network-layer to provide an additional
line of defense working in coordination with, or in place of, any
device-specific security measures.

Network-layer security schemes in IoT contexts are not new. As
one example, SVELTE [19] provides network intrusion detection
for IoT but focuses on routing attacks in sensor networks. Home
networks present a challenging environment for a network-layer
solution due to the limited resources available on a home gate-
way router. IoT-IDM [15] directs IoT traffic to an IDS using Open-
Flow, but requires additional hardware to run the IDS and Open-
Flow controller. Consumer-grade routers typically use a low-power
(< 500MHz) ARM or MIPS processor with very limited memory or
storage [17], making these methods infeasible without hardware
changes. Coping with these processing difficulties may require a
centralized solution where traffic analysis is “outsourced” to an
external server [4]. However, this contradicts many important se-
curity requirements due to the sensitive nature of IoT data (e.g.,
camera feeds, health data, voice recordings), as well as latency re-
quirements, which mandate that certain sensitive or real-time data
should be handled locally.

In light of these challenges, we argue that a new network-layer
architecture is necessary in order to protect vulnerable devices
within the available resource constraints of a home network. In
the next section, we discuss our current hypothesis on how the
characteristics of IoT traffic may make analysis on a home router
more tractable and describe an initial design for this architecture.

3 INVESTIGATING TRAFFIC PATTERNS
3.1 Hypothesis
IoT devices are special-purpose: they typically perform a fixed set
of tasks based on the device’s hardware. For example:
• A security camera may send video data or motion events to
a remove server, or receive requests to record events
• A smart plug our outlet may receive events to toggle the
plug’s state, or send periodic updates to monitor energy
usage
• A media device, such as a smart TV, may play various media
streams from various content providers

This limited functionality implies that many IoT devices connect
to relatively few entities on the Internet—most namely limited to the
remote servers maintained by the manufacturer. These cloud-based
services are critical to modern IoT infrastructure and often provide
the necessary control logic and resources to implement complex
functionality. While authorized users and devices may connect to
an IoT device, this typically occurs indirectly through the cloud.



Figure 1: Testbed architecture for IoT device characterization

In contrast, a general-purpose system like a workstation or smart-
phone, connects to a very high number of entities through various
applications or web browsing. Some IoT devices may performmulti-
ple functions while still connecting to few entities: as one example,
the Samsung SmartThings hub, which controls an array of smart
home devices, but performs all of its control logic via Samsung’s
cloud API [22]; this appears to be a common trend as devices be-
come more complex.

We hypothesize that the limited number of connections makes
traffic analysis on a resource-constrained home gateway more
tractable. Since the set of entities is limited, this may allow con-
struction of lightweight access control policies, or whitelists, to
restrict communication to these trusted entities and block other
traffic. If applied correctly, this scheme could prevent, for example,
a malicious host attacking an exposed management interface, or
a compromised device from sending packets to untrusted sources,
such as leaking data to a botnet or participating in a DDoS attack.

While the core of a whitelist-based approach may be enforced by
simple ACL rules, constructing accurate policies that can identify
and permit only legitimate traffic introduces significant logistical
challenges. To explore the feasibility of this approach, we observed
traffic patterns from a small set of devices, discussed in Sections 3.2
and 3.3. We discuss the implications of our findings for designing an
architecture that incorporates whitelist-based policies in Section 4.

3.2 Small-scale IoT testbed
To begin a preliminary analysis of IoT device traffic patterns, we
developed a basic testbed for measuring traffic from a small number
of common devices, shown in Figure 1. Our goal was to create a
network similar to a typical home network, while allowing us to
capture all traffic from the devices for analysis. We used a TP-Link
router [25] with OpenWRT [16] firmware to provide NAT, DNS,
and DHCP services, mimicking the services typically provided by
a home router. OpenWRT firmware provides us with a minimal
Linux distribution on the router, which allows a high degree of
flexibility to configure the services provided for the devices.

Test devices are connected to a commodity wireless access point,
such that traffic between the access point and the router can be mir-
rored to a monitoring server. In addition, we include a Power over
Ethernet (PoE) switch to accommodate devices that require it, such
as IP cameras. In order to capture traffic sent between devices in our
testbed, all hosts are assigned IP addresses in individual /30 subnets
so that all local traffic must be first directed to the router. This
extra forwarding step adds a small amount of latency (≈10 ms) to
inter-device traffic, which is negligible in a home network scenario.

Device Total DNS Queries Unique DNS Queries

Echo 1231 (24.0) 26 (0.0)
Chromecast 7297 (150.5) 58 (0.0)
Smart Plug 56 (1.0) 4 (0.0)
Laptop 9432 (174.0) 657 (2.5)

Table 1: Summary of DNS traffic observed in IoT testbed. Numbers
in parenthesis represent the median number of queries per hour.

Our testbed is currently comprised of four devices: an Amazon
Echo Dot [1], a Google Chromecast [7], a TP-Link smart plug [26],
and a Dahua PoE IP camera [3]. We selected these devices for initial
testing to provide a diverse range of vendors and traffic types.While
this is by no means a large or representative sample of the possible
types of IoT devices, these four examples provide a starting point
to gather initial observations and inform future research questions
to help construct a feasible approach.

3.3 Traffic observations
For this analysis, we focused on identifying patterns in the number
of hosts with which each device communicates by observing the
DNS queries made by each device and the IP addresses it contacts.

We captured traffic from each device during a 48-hour period
since its initial configuration. A summary of the DNS traffic ob-
served is shown in Table 1. Overall, we observe that each device
makes many repeated DNS queries for the same domains, which
correspond to their respective cloud providers. For example, the
Chromecast made 7297 total DNS queries to only 58 unique domain
names in the 48-hour period; most were to names in Google service
domains.

Figure 2 shows the number of unique DNS queries and IP ad-
dresses contacted for each device during the measurement period.
We show both the total number of unique queries as well as the
number of new queries every hour relative to the start of the mea-
surement period. After configuring each device, we performed a
number of actions to exercise each device’s features (e.g., streaming
videos from the Chromecast, asking questions using the Echo, and
toggling the smart plug). During our tests, the camera never con-
nected to a host outside the local network or made any non-local
DNS queries, so we omit a plot for it.

Our preliminary results show that each device makes relatively
few new DNS queries after initialization. Each device performed
a median of zero new DNS queries per hour after initialization,
which indicates that devices are making repeated queries for the
same domain names. Overall, this demonstrates that the devices
we observed are communicating with the same few entities over
time, supporting hypothesis for building whitelist-based policies
from on a small set of entities to account for common-case traffic.

For comparison, Figure 3 shows a similar plot for traffic captured
from one of the authors’ laptops during normal use to provide
one example for traffic from a general-purpose system. The large
increases in traffic during hours 20–26 and 40–45 correspond to
the times of day when the system was under the heaviest user
workload. In total, the laptop queried 657 unique domains during
the measurement period at an average of about 30 domains per
hour during peak hours, more than ten times more than any of the
IoT devices.
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Figure 2: Cumulative (top) and new (bottom) DNS queries and IP addresses contacted by three IoT devices over a 48-hour period since initial
configuration. The first hour of IP and DNS traffic in the “new” plots is circled.
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Figure 3: Cumulative (left) and new (right) DNS queries and IP addresses contacted by a general-purpose laptop belonging to one of the authors.
Note that both plots have different y-axes.

Critically, we observe two important considerations that chal-
lenge our hypothesis. While our devices demonstrate predictable
traffic during many operations, certain legitimate device actions
initiate connections to entities not used during normal operations.
Many functions on the Chromecast and Echo utilize content from
third-party sources based on user actions, such as playing third-
party audio and video streams. For example, when we asked the
Echo to play the stream for a local radio station, the device made
several DNS queries and initiated connections to the stream on

the station’s website. A listing of two example user actions and
their respective DNS queries is shown in Table 2. These user ac-
tions demonstrate how a device can be directed to load content
from an entity other than their main cloud provider, which creates
additional challenges for building policies.

We also observe that devices contact a much larger range of IP
addresses than DNS names, since the IP address associated with
a DNS name may change over time due to load balancing. While
it may be desirable to incorporate simple matching of IP prefixes



Action Domains Contacted

Amazon Echo:
Playing a radio stream

opml.radiotime.com
wbur-sc.streamguys.com
audio.wbur.org

Chromecast:
Playing a twitch.tv
video stream

secure.twitch.tv
cdn.mxpnl.com
api.mixpanel.com
api.twitch.tv
usher.ttvnw.net
static-cdn.jtvnw.net
video-edge-<id>
.jfk03.hls.ttvnw.net

Table 2: Example user actions and associated DNS queries

or AS numbers into our policies, this may not be possible in all
cases. For example, the Echo and Chromecast contacted a number
of new IP addresses in each measurement period, but most of these
are localized to Amazon’s and Google’s networks, respectively. In
contrast, the smart plug’s unique IP addresses come from queries
to public NTP pools (e.g., pool.ntp.org), which results in IP
addresses from a very diverse set of networks.

These observations indicate that our device policies must be
dynamic enough to account for variations in behavior due to user
actions and network-level changes, which provides new research
questions to motivate our design. As we continue our work, we
plan to perform further studies on other metrics that may further
distinguish different types of traffic, such as periodicity, seasonality,
and coordination between devices. These features may as highlight
further variations that must be taken into account for policy designs.
We also plan to perform a systematic study of other traffic features,
and also explicitly infect some of the devices with malware to
compare traffic patterns in compromised devices. The camera in
our testbed, for example, is vulnerable to infection by the Mirai
botnet [11].

4 DISCUSSION
Despite our small sample size for traffic measurements, our work
has helped us identify important considerations for designing a
secure architecture for smart homes using whitelist-based policies.
In this section, we list our present set of key features for such an
architecture and outline possible approaches for further investiga-
tion. We acknowledge that this is very preliminary work: our aim
is to present our current findings and promote discussion on smart
home security at the network-layer.

F1. Support for user actions and apps: Some devices use data
from a variety of sources, such as the streaming media and third-
party application features of the Amazon Echo and Google Chrome-
cast from our testbed. While a basic access control list may capture
the networks a device may contact during idle time, this is not
enough when the device is legitimately directed to make an outgo-
ing connection to another entity, such as a streaming video service.
This demonstrates that any whitelist policies must be able to change
dynamically to account for changes to traffic based on user actions
or configuration changes.

In cases where devices are directed to contact entities by their
cloud provider (which is true for the Echo and Chromecast), poli-
cies could benefit from a capability-based framework leveraging

DNS [24]. Using this approach, a device could obtain a capability
from its cloud provider for a certain connection, which is sent to
the router and verified against the policy before the connection is
allowed. A capability-based system could help ensure that dynamic
actions or user-installed applications correspond to legitimate ac-
tions permitted by a device policy, rather than malicious traffic
from a compromised device.

F2. Secure policy creation and distribution: An area for sig-
nificant concern is how the device policies would be created, main-
tained, and distributed. Policies crafted by the application developer
or manufacturer may be too permissive, similar to permission sys-
tems for smart applications [5]. In addition, policies will require
updates to coincide with device firmware updates or discovery of
new vulnerabilities. We therefore suggest that policies should be
maintained by one or more independent authorities rather than
trusting a single party. Similar to vulnerability databases, a policy
repository could allow for multiple stakeholders such as manufac-
turers, organizations, or security-conscious users to transparently
submit, audit, and curate policies for many types of devices.

This area also presents an opportunity for automatically generat-
ing or verifying policies using automated techniques. For example,
machine learning approaches for classifying IoT traffic, such as the
work of Meidan et al. [12], could be used to generate or supplement
policies to identify anomalies. When combined with one or more
central repositories, anomaly detection among home routers could
allow for coordination to develop responses for emerging threats.

F3. Resource and privacy limitations: Creation of robust poli-
cies, especially when involving coordination between devices and
repositories, raises privacy and performance concerns. As discussed
in Section 2, home routers typically have very limited computa-
tional resources. While it may be advantageous to send raw device
traffic to a centralized source for complex processing or to help
gather global intelligence, this is not trivial due to the privacy con-
cerns. In our future developments, we will investigate methods
for efficiently enforcing policies and gathering intelligence with-
out raw data aggregation and maximizing use of local processing
capabilities for latency, efficiency, and privacy.

F4. Device installation anduser interaction: Installing a new
device on a home network would require an initial configuration
process to bind the device to a suitable policy. Conceptually, this
requires that the network identify the device is an IoT device, and
securely obtain an up-to-date policy for it from the appropriate
repository. To facilitate this critical bootstrapping process, a list of
trusted repositories could be pre-installed on the router or config-
ured by the user. Ideally, this approach should allow user oversight,
while minimizing required interactions as much as possible to en-
sure policies remain updated.

5 CONCLUSION
Our work has presented the need for a new network-layer archi-
tecture targeted specifically for home networks to protect against
vulnerable IoT devices. We have provided initial observations of
IoT traffic from a small set of devices to suggest that a policy-based
approach may be tractable and warrants further investigation to
determine its feasibility within resource and privacy constraints.
Our analysis, while preliminary, has illuminated key features for



designing this network architecture. In our continued efforts to-
ward this goal, we plan to study additional traffic characteristics on
larger and more diverse groups of devices as well as investigate the
design for a robust policy framework that supports shared process-
ing capabilities. We hope that the our current findings presented
in this work highlight the importance of network-layer security in
smart home networks and promote further discussion on how to
improve security measures in this area.
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